Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi ar CRM08 Rev 1.11 ME 30/03/2022 ## CONTINUOUS INTERNAL EVALUATION - 3 | Dept:ME | Sem / Div:1st
D,E & F | Sub:Elements of mechanical engineering | S Code:21EME15 | |-----------------|--------------------------|--|----------------| | Date:08/04/2022 | Time:3:00-4:30pm | Max Marks: 40 | Elective: N | Note: Answer any 2 full questions, choosing one full question from each part. | Q | N | Questions | Marks | RBT | CO's | | | | |--------|-------|--|-------|-----|------|--|--|--| | | PARTA | | | | | | | | | housed | a | Explain the following with a neat sketch: Spur Gear & Bevel Gear. Explain their applications. | 8 | L2 | CO4 | | | | | | ь | In a crossed belt drive the difference in tensions between
the tight and slack sides of the belt is 1000N. Find the
tensions on the slack and tight sides, if the angle of
contact is 160° and the coefficient of friction is 0.3. | . 6 | L3 | CO4 | | | | | | С | Explain Cartisian Robot Configuration with suitable 3D sketch. Also, write its advantages, limitations & applications. | | L2 | CO4 | | | | | OR | | | | | | | | | | 2 | a | Explain the following with a neat sketch: Helical Gear & Rack and Pinion. Explain their applications. | 8 | L2 | CO4 | | | | | | | A Simple gear train is made up of four gears A,B,C & D having 20,40,60 &70 teeth respectively. If the gear A is the main drive rotating at 500rpm clockwise, calculate the Speed of inbtermediate gears, Speed and direction or last follower and train value. | 6 | L3 | CO4 | | | | | | | Explain Cylingdrical Robot Configuration with suitable 3D sketch. Also, write its advantages, limitations & applications. | | L2 | CO4 | | | | Page: 1 / 1 | | PART B | | | | | | |---|--------|---|---|----|-----|--| | 3 | | Explain the working principle of Lathe machine with a simple sketch showing major parts | 8 | L2 | CO5 | | | | | Explain following operations performed on a lathe machine: Facing & Taper Turning | 6 | L2 | CO5 | | | | C | Write a note on Smart manufacturing and its importance | 6 | L2 | CO5 | | | | 1 | OR | | | | | | 4 | a | Explain the working principle of Horizontal milling machine with a simple sketch showing all the major parts. | 8 | L2 | CO5 | | | | b | Explain the working principle of CNC machine with a simple sketch and explain all the parts | 6 | L2 | CO5 | | | | C | Explain the differences between open and closed loop systems with a suitable sketch | 6 | L2 | CO5 | |